Posts Tagged Pedestrians

Cell phone conversations and child pedestrian’s crossing behavior; a simulator study

This is our most recent publication, accepted for publication in Safety Science.

Please cite this article in press as: Tapiro, H., et al. Cell phone conversations and child pedestrian’s crossing behavior; a simulator study. Safety Sci. (2016), http://dx.doi.org/10.1016/j.ssci.2016.05.013

Cell phone conversations and child pedestrian’s crossing behavior; a simulator study

Hagai Tapiro, Yisrael Parmet and Tal Oron-Gilad

Abstract

Child pedestrians are highly represented in fatal and severe road crashes and differ in their crossing behavior from adults. Although many children carry cell phones, the effect that cell phone conversations have on children’s crossing behavior has not been thoroughly examined. A comparison of children and adult pedestrians’ crossing behavior while engaged in cell phone conversations was conducted. In a semi-immersive virtual environment simulating a typical city, 14 adults and 38 children (11 children aged 7-8; 18 aged 9-10 and 9 aged 11-13), experienced road crossing related traffic-scene scenarios. They were requested to press a response button whenever they felt it was safe to cross. Eye movements were tracked. Results have shown that all age groups’ crossing behaviors were affected by cell phone conversations. When busy with more cognitively demanding conversation types, participants were slower to react to a crossing opportunity, chose smaller crossing gaps, and allocated less visual attention to the peripheral regions of the scene. The ability to make better crossing decisions improved with age, but no interaction with cell phone conversation type was found. The most prominent improvement was shown in ‘safety gap’; each age group maintained a longer gap than its predecessor younger age group. In accordance to the current study, it is safe to say that cell phone conversations can hinder child and adult pedestrians’ safety. Thereby, it is important to take those findings in account when aiming to train young pedestrians for road-safety and increase public awareness.

Interested in seeing an interactive visualization app of our data?https://eyemove.shinyapps.io/cell-phone/

2016-05-28_11h20_13.png

Interactive app to view the eye gaze data. Click on the link and follow the instructions shown above.

Advertisements

, , , , ,

Leave a comment

Child Pedestrian Crossing Study – a few updates

We have just completed this study. Analysis of results and full report are being prepared.

The objective of the research is to lay the foundations for examining whether training child-pedestrians’ HP skills while crossing a road may improve their ability to perceive potentially hazardous situations and to predict hazards prior to their materialization.

  • A first step in developing a training program is to form understanding of child-pedestrians’ traffic behavior patterns. Comparing adults and children provides a depiction of what elements in the traffic environment are crucial for the road-crossing task.
  • In the present study, children and adults participant in a two-phase experiment. They observe typical urban scenarios (see Figure 1) from a pedestrian’s point of view (see Figure 2) and a required to: (1) Press a response button each time they feel it is safe to cross. (2) Describe the features that they perceive as relevant for a safe road-crossing decision, i.e., the conceptual model each group of pedestrians has. Participants’ eye-movements were recorded throughout the experiment utilizing a helmet mounted tracker (Model H6-HS, Eyetrack 6000).
  • To achieve this a three dimensional database of a prototypical Israeli city was built in cooperation with b.design (http://www.b-d.co.il/) , a leading provider of 3-D content. Cars, trees, billboards and various other urban elements were also designed uniquely for this environment. Using the VR-Vantage and VR-Forces different scenarios were developed to examine crossing behavior at various conditions.

 

image

Figure 1. The generic city simulated environment presented in the Dome setting (it looks a bit awkward here because its intended to be projected on a dome screen). The Field of View is: (1) Unrestricted (above); (2) Partially obscured by the road’s curvature (middle); (3) Partially obscured by parked vehicles (below).

 

image

Figure 2. Simulated environment from a child-pedestrian’s point of view.

, ,

1 Comment

Child Pedestrian Crossing Study – Trailer

  • Pedestrian road crashes cause death, injury and disability among children. Five to nine year old children endure ~four times the injury rate of adults, in spite of their lower exposure to traffic. 
  • Practical training can lead to improvements in children’s crossing skills, e.g.,  the ability to make roadside timing judgments (Demetre et al., 1992), plan safe routes (Thomson et al., 1992) and cross safely at junctions (Rothengatter, 1984).

 

A first step in developing a training program is to form understanding of children traffic behavior patterns, e.g., when and where do children cross? What are they looking out for before crossing? etc.

Comparing adults and children provides a depiction of what elements in the traffic environment are crucial for the road crossing task.

  • In the present study, children and adults participate in a two-phase experiment. They observe typical urban scenarios from the point of view of pedestrians and are asked to:
    • Describe the features that they perceive as relevant for crossing the road safely, i.e., the conceptual model each group has.
    • Press a button or ‘step off a curb’ each time they think it is safe to cross.
  • Eye movements are recorded using a helmet mounted tracker, as shown in the Trailer.

References

Demetre, J.D. & S. Gaffin, S. (1994). The salience of occluding vehicles to child pedestrians, British Journal of Educational Psychology, 64, 243–251.

Rothengatter, J.A. (1984). A behavioral approach to improving traffic behaviour of young children. Ergonomics 27 (1984), pp. 147–160.

Thomson, J.A., Tolmie, A., Foot, H.C. & McLaren, B. (1996). Child Development and the Aims of Road Safety Education. Road Safety Research Report No. 1. London: HMSO.

1 Comment

A Dome Projection Platform to study Pedestrian Behavior

Did you know:

  • Pedestrian road crashes are amongst the most substantial causes of death, injury and long-term disability among children, particularly among those in the age range of 5-to 9 years
  • Negotiating traffic requires a variety of cognitive and perceptual skills.  When those skills are not properly developed, pedestrians road-related decisions will probably be inadequate
  • Young children are less competent in traffic than adults
  • A large proportion of traffic injuries occur while children are walking to or from school
  • Elementary-school children cross the road without adults’ accompaniment, especially when coming back from school
  • Prohibiting children under the age of 9 from crossing the road alone is not sufficient for reducing their over-involvement in pedestrian crashes

Towards understanding child-pedestrian’s deficits in perceiving hazards when crossing the road

Together with my colleague David Shinar and two graduate students Anat Meir and Hagai Tapiro we are  in the process of developing a platform to study how children at various ages perceive hazards and dangers in the traffic environment. We have developed an experimental platform that mimics a typical Israeli urban environment.

A Dome projection facility

  • Integrates the natural visual and motor skills of a person into the environment
  • Large enough to have participants immersed within its circumference
  • Physical movement can be added to improve simulation fidelity
  • Our dome is a 180 degrees projection facility (6.5 meters in diameter with 3-D perception projection system) it is temperature and noise controlled
  • A verity of measurement (including eye tracking) and recording systems are available

image

Musts….

  • for such a facility to be useful it must project a typical urban environment that resembles reality with the appropriate level of resolution and level of detail
  • A 3-d model database of a typical Israeli urban area was developed (the database was generated by bdesign and is run on the MAK VR-Forces/VR-Vantage platform)
  • Typical crossing scenarios are now being designed

So here I am proudly standing in the dome room and here’s Hagai in the control room.

imageimage

, , , , ,

Leave a comment